Implications of CD94 deficiency and monoallelic NKG2A expression for natural killer cell development and repertoire formation.

نویسندگان

  • Russell E Vance
  • Amanda M Jamieson
  • Dragana Cado
  • David H Raulet
چکیده

Natural killer (NK) cells are believed to achieve self-tolerance through the expression of self-MHC-specific inhibitory receptors, such as members of the Ly49 and CD94/NKG2 families. Individual Ly49 genes are stochastically expressed by NK subsets and are expressed in a monoallelic fashion, but little is known about the mechanisms underlying CD94/NKG2A expression. We show here that, like Ly49 genes, mouse Nkg2a is stochastically and monoallelically expressed. Thus, a single general mechanism controls expression of all known MHC-specific receptors by mouse NK cells. In addition, we find that DBA/2J mice are naturally CD94-deficient and do not express cell-surface CD94/NKG2A receptors, even on neonatal NK cells. Thus, self-tolerance of neonatal NK cells cannot be attributed to CD94/NKG2A expression. Taken together, the results lead to a reconsideration of current models of NK cell development and self-tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imprint of human cytomegalovirus infection on the NK cell receptor repertoire.

Expression of the activating CD94/NKG2C killer lectin-like receptor (KLR) specific for HLA-E was analyzed in peripheral blood lymphocytes (PBLs) from healthy adult blood donors; the expression of other natural killer (NK) cell receptors (ie, CD94/NKG2A, KIR, CD85j, CD161, NKp46, NKp30, and NKG2D) was also studied. Human cytomegalovirus (HCMV) infection as well as the HLA-E and killer immunoglob...

متن کامل

NKG2A Complexed with CD94 Defines a Novel Inhibitory Natural Killer Cell Receptor

CD94 is a C-type lectin expressed by natural killer (NK) cells and a subset of T cells. Blocking studies using anti-CD94 mAbs have suggested that it is a receptor for human leukocyte antigen class I molecules. CD94 has recently been shown to be a 26-kD protein covalently associated with an unidentified 43-kD protein(s). This report shows that NKG2A, a 43-kD protein, is covalently associated wit...

متن کامل

NKG 2 A Complexed with CD 94 Defines a Novel Inhibitory Natural Killer Cell Receptor By Andrew

CD94 is a C-type lectin expressed by natural killer (NK) cells and a subset of T cells. Blocking studies using anti-CD94 mAbs have suggested that it is a receptor for human leukocyte antigen class I molecules. CD94 has recently been shown to be a 26-kD protein covalently associated with an unidentified 43-kD protein(s). This report shows that NKG2A, a 43-kD protein, is covalently associated wit...

متن کامل

HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A.

We previously showed that the availability of a nonamer peptide derived from certain HLA class I signal sequences is a necessary requirement for the stabilization of endogenous HLA-E expression on the surface of 721.221 cells. This led us to examine the ability of HLA-E to protect HLA class I transfectants from natural killer (NK) cell-mediated lysis. It was possible to implicate the CD94/NKG2A...

متن کامل

Molecular determinants regulating the pairing of NKG2 molecules with CD94 for cell surface heterodimer expression.

The lytic capacity of a NK cell is regulated, in part, by the balance in cell surface expression between inhibitory CD94/NKG2A and activating CD94/NKG2C heterodimers. We demonstrate that, in the absence of DAP12, rhesus monkey NKG2A is preferentially expressed at the cell surface with CD94 due to a single amino acid difference in the transmembrane of NKG2A and NKG2C. Furthermore, in the context...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 2  شماره 

صفحات  -

تاریخ انتشار 2002